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Summary

This policy brief uses geospatial data to analyse

challenges and opportunities for linking school Key Results
meals programmes (SMPs) and regenerative e Analysis confirms that starting points vary
agriculture (RA) interventions in Ghana, Nigeria, significantly across and within countries,
Kenya, and Rwanda. It maps key demanding that interventions be tailored to
socio-ecological variables—including population specific agroecological zones, farm
density, biodiversity threats, agro-ecological structures, and conservation needs.
zones, farm size, water risk, land degradation, e Environmental and social crises overlap in
poverty levels, and school attendance—to gain specific geographic hotspots where land
insights into food production demand and degradation, water stress, poverty and
supply barriers. conflict converge.

e Widespread land degradation, severe water
The geospatial analysis suggests that risk, and biodiversity threats show that
environmental and social crises often overlap in current farming practices are straining the
specific "hotspot" regions and the most natural resource base. Climate change will
food-productive rural areas frequently suffer likely intensify these pressures, making a
from the highest poverty. The brief concludes transition to regenerative approaches urgent.
that identifying these hotspots is a critical first e Rural areas that produce the most food,
step to developing more impactful predominantly on smallholder farms, often
interventions. It sets the baseline for sub- suffer from the highest levels of poverty.
sequent analysis which will quantify the theor- Increasing production alone is insufficient;

farmers need reliable market access and

etical capacity of those agricultural systems to )
better economic returns.

ensure healthy diets to the local population.

¥ $
’ Alliance %%

Bioversity & CIAT CGIAR

\ .. P

g N WOR EL L N s

IYGIEN i X € Cantre e recherches pour s développement international

S \ T i Foundation IMPERIAL

Utilising Geospatial Data Analysis to Enhance School Meals and Regenerative Agriculture Interventions | 1




Context

Geospatial analysis reveals where challenges and
opportunities converge, enabling policies and plans to
be tailored to place-specific realities. By identifying
spatial patterns, it supports targeted interventions,
more efficient resource allocation, and decisions that
better respond to local needs and maximise impact.
One particular intervention that can benefit from
geospatial analysis is school meals programmes
(SMPs).

Strategically designed SMPs have the potential to
serve as a catalyst for the adoption and scaling of
regenerative agriculture (RA) interventions, and these
types of interventions may enhance access, quality,
and diversity of school meal food. A transition to RA
also presents an opportunity to improve soil health
and biodiversity, increase crop productivity, enhance
food security, and support sustainable livelihoods
while mitigating climate risks. However, the adoption
of RA practices requires careful planning, targeted
investments and tailored interventions.

Understanding the potential for adoption of RA
practices requires a holistic perspective of
socio-ecological systems where human and
environmental factors interact. Therefore, we
analysed geospatial data through a set of critical,
interconnected variables that represent significant
environmental and social stressors that determine the
resilience, sustainability, and nutritional outcomes of
regional agriculture. We refer to these variables as
landscape-level factors. By analysing these specific
variables, we can identify key leverage points and
opportunities for implementing regenerative practices
that support both ecological health and improved
child nutrition.

Understanding the complex and diverse realities in
local country contexts can better guide collaborations,
investments and interventions. In our analysis, we use
high-resolution geospatial data to explore these
variables across Ghana, Nigeria, Kenya, and Rwanda.
These four countries were selected because they are
currently investigating food systems transformation
through SMPs and RA interventions. This initial policy
brief outlines the findings from the first-phase of
geospatial analysis with a particular focus on
socio-ecological variables.

Approach

We selected the most high-quality, high-resolution,
and recent (post-2015) environmental and social
geospatial variables available for each country. This
sourcing and selection process was guided by the need
to gain insights into demand and supply barriers, as
well as opportunities for scaling up SMP and RA
linkages in each country.

First, to visualise the current agricultural and
ecological landscape, we mapped population density
against intact ecosystems and protected areas, species
biodiversity threats, dominant agro-ecological zones,
and farm size distribution relative to remoteness. This
remoteness layer was itself a composite, created by
first combining nine raster files and then calculating
the minimum travel time for each pixel across all
layers. This process ensured the final map accurately
represents the travel time to the nearest urban area
with at least 5,000 inhabitants.

We then mapped key environmental stressors and
future scenarios, to identify constraints and opport-
unities, specifically by analysing land degradation
processes, overall water risk, and projected changes in
temperature and precipitation. Finally, we integrated
critical socio-economic indicators selected for their
ability to influence the reach of SMPs and pinpoint
vulnerable populations. These included water-related
conflicts, the Multidimensional Poverty Index (MPI),
and gender-based disparities in school attendance.
Together, these variables offer an approximation to the
complex realities within and across countries, allowing
for a detailed assessment of where RA can most
effectively be implemented to build resilient local food
systems capable of nourishing school communities.

Findings

School meals, conservation and biodiversity

The intersection of population density, cultivated land,
and natural ecosystems provides the foundational
context for any food system analysis. As shown in
Figure 1, there is considerable variation in population
density across the four countries. The geospatial data
reflects that Rwanda has the highest population
density, with its remaining natural habitats largely
restricted to its borders. In contrast, Kenya maintains
the most extensive intact ecosystems and protected
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areas (all IUCN categories and OMECs). Regardless of
where each country lies on this spectrum, population
centres and public procurement can intensify pressure
on these vital ecosystems. Achieving food security and
conservation goals, therefore, requires close
coordination from the outset, with clear mechanisms
to detect and mitigate potential negative impacts.

Recent estimates indicate that biodiversity (including
amphibians, mammals, and birds) appears to face high
levels of threat across all the countries (Figure 2). The
highest threat levels often coincide with densely
populated areas (such as the coastal regions of Kenya
and the southern parts of Ghana and Nigeria). The
maps also reveal corridors under high threat that
connect critical ecosystemes. It is, therefore, crucial
that the suite of regenerative practices promoted
includes biodiversity-friendly approaches at both the
farm and landscape levels, to avoid worsening these
threats. Agricultural landscapes can play an important
role in halting biodiversity loss by providing resources
and habitat for migrating species, while still producing
sufficient and nutritious food.
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Figure 1. Overlaps between population density, intact ecosystems (low human influence)
and protected areas. Source: Lebakula et al. 2024, Mu et al., 2021, and UNEP-WCMC
and IUCN, 2025.

Agroecological context and smallholder realities

It appears that agricultural production in the studied
countries occurs on lands with significant
environmental constraints (Figure 3). The maps
suggest that Rwanda is dominated by land with severe
soil and terrain limitations, while Kenya appears
characterized by arid and desert-like conditions; and
Ghana and Nigeria by large semi-arid areas and terrain
limitations. The prevalence of these challenging
agroecological zones demands an agriculture that
works with, not against, the existing environmental
capacity. Regenerative practices that promote

diversification—by using species adapted to local
conditions—are essential for ensuring production
stability and resilience, which can be far more
important performance indicators than food
production yield in such settings.
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Figure 2. Species threat (STARt) abatement metric: where actions to mitigate existing
threats. Threat values for amphibians, birds and mammals. Source: Mair et al. 2021.
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Figure 3. Food and Agriculture Organization's (FAO) Global Agro-Ecological Zones
(GAEZ v5). Source: (FAO and IIASA, 2025).

Across these regions, food is predominantly produced
by smallholders on farms of less than five hectares
(Mehrabi and Riccardi, 2024), many of whom are in
remote areas with more than one or two hours travel
time from the nearest urban centre with at least 5,000
inhabitants (Nelson et al., 2019) (Figure 4).

Overlapping environmental stressors

The misalignment between current production
methods and these environmental realities may put
communities at risk of deepening food insecurity,
resource-based conflict, and irreversible land
degradation. Our analysis suggests that land
degradation is widespread in the arable lands across
all countries, with most areas already showing
concerning signs of decline from processes like water

Utilising Geospatial Data Analysis to Enhance School Meals and Regenerative Agriculture Interventions | 3




erosion and loss of soil organic matter (Pravilie et al.,
2021) (Figure 5). Water constraints are also evident,
with recent analyses showing medium-to-high overall
water risk—encompassing quantity, quality, and
regulatory pressures—across nearly all territories
(Figure 6). The data indicates that this water stress is
already manifesting as conflict, particularly in Northern
Nigeria and Kenya. Beyond the immediate humani-
tarian tragedy and social costs, conflicts fundamentally
disrupt agricultural supply chains, making the reliability
of food supply a primary constraint for any SMPs
operating in these zones (Figure 7).
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Figure 4. Dominant farm size (Mehrabi and Riccardi, 2024) and remoteness of certain areas
with an estimated travel distance >1h to urban areas with >=5,000 inhabitants. Source:
Nelson et al., 2019.
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Figure 5. Overlapping degradation processes in arable land (aridity, erosion, vegetation
decline, salinization, organic carbon decline). Source: (Pravilie et al., 2021)

Regardless of their location or production system,
smallholder farmers will likely face harsher, more arid
climates in the near future (Figure 8). In this context,
the tailored integration of SMPs and RA interventions
to contrasting and environmentally stressed
conditions, can contribute to wider outcomes such as
peace building, resilience, and wellbeing.

However, the success of such programmes depends
on factors that are invisible on a map, such as
infrastructure and capacity building support. For
instance, if farmers adopt agroforestry with fruit trees,
then systems for drying, storage, and transport must
be in place to deliver safe and nutritious products to
schools. If school meals require diversified foods such
as legumes which take longer to cook, then schools
must be equipped with appropriate tools and slow
cookers (Wang et al., 2022). If shifting to RA practices,
then extension services must move away from
conventional, single-crop systems, and reorient
towards diverse, regenerative approaches. Local and
traditional knowledge, farmer-led experimentation and
learning, and peer education groups can also support
these efforts and help re-designing farms that
capitalize local cultivated diversity and tailored RA
practices to their unique contexts.
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Figure 6. Overall water risk: scarcity, quality, and regulatory pressures. Source: Kuzma
etal., 2023.
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Figure 7. Locations and fatality counts of water-related conflicts (2010 - 2024). Conflict
data includes resource-based, attack of water infrastructure, and protest or
demonstration. Source: (Song, 2025).
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This suggests that, for agrarian communities, current
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Figure 8. Projection of temperature precipitation change percentage (2000-2030)
under scenario A2; level of agreement between assessed models. Source:
(Navarro-Racines, 2020).

The socio-economic landscape: poverty and
education

The maps reflect that the regions producing the most
food often have the highest levels of multidimensional
poverty (MPI) (United Nations Development
Programme, 2024) (Figure 9). Figure 9 highlights
distinct regional disparities in poverty that are critical
for targeting SMP interventions:

Nigeria and Ghana appear to exhibit a sharp
North-South divide. The northern regions show the
highest intensity of deprivation (indicated by darker
red/orange hues). When viewed alongside Figure 4, it
is evident that these high-poverty zones overlap with

remote landscapes dominated by smallholder farming.
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In Kenya, poverty appears to be most concentrated in
the arid and semi-arid northern and eastern lowlands
(Figure 3), contrasting with lower poverty rates in the
central highlands.

While Rwanda shows lower overall intensity of poverty
on this regional scale, localised pockets of poverty
appear to persist. This suggests that broad regional
interventions may miss vulnerable groups—requiring
more precise, community-led approaches.
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Figure 9. Multidimensional Poverty Index (MPI) by subnational boundaries.
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Figure 10. Sub-national and gender-based disparities in years of school attendance
for males and females of 20-24 years old in 2017. Source: Local Burden of Disease
Educational Attainment Collaborators, 2020.
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Discussion

This geospatial analysis indicates that SMPs, if well The maps and analyses presented here, rather than an
designed, can be a promising entry point for fostering exact diagnostic, aim to stimulate discussion, reflection,
rural development and ensuring nutritious diets for and collaboration, fostering the multi-sectoral and
children, especially when paired with RA interventions. multi-stakeholder engagement required to design and
However, the results of geospatial data do not reflect implement strategies that deliver planet-friendly SMPs.
the social influencing factors at play. Therefore,

regional differences can guide discussions for tailoring In particular, these maps show that any agriculture
interventions, yet these interventions can greatly interventions should not take place in a vacuum. Instead,
benefit from participatory and inclusive processes to agriculture can be seen as a solution space for:
determine important but more invisible factors

hindering the goal of planet-friendly meals. For @ Restoring soil

instance, food choices are heavily influenced by prices,
media, cultural norms, traditional knowledge regarding
nutritious local species, and many other factors.
Holistic interventions could also connect food
availability and quality with educational campaigns.
Local knowledge on practices, cultivated diversity and

Retaining and enhancing water resources

Improving water quality

Delivering culturally relevant,

traditional recipes is critical for redesign production R ]

systems that meet cultural, environmental and

nutritional requirements. Local engagement and active Respecting and enhancing biodiversity
contribution in redesigning farms and integrating

farmers with schools is central to ensure interventions Supporting peace building, prosperity,

are locally grounded and globally relevant contributing & social cohesion

to global commitments on land degradation, water

security, and biodiversity. ? Enabling communities to adapt to climate change
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About this policy brief

This project brief is part of a series aiming to convey the results and progress of the Food Systems Transformation
Through School Feeding Project, funded by the International Development Research Centre (IDRC) and the
Rockefeller Foundation. The full series can be found at www.regenerativefoodsystemsalliance.org.

For more information please contact:
Principle Investigator at Imperial College London: Dr. Samrat Singh (samrat.singh@imperial.ac.uk)
Principle Investigator at Alliance Bioversity-CIAT: Natalia Estrada Carmona (n.e.carmona@cgiar.org)

Geospatial data analysis by Trinidad del Rio-Mena.
Document designed by Savannah Dysard.
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